Implementing and evaluating landscape fuel treatments – Sierra Nevada

Adaptive Management Project: Fire and Forest Ecosystem Health integration team meeting
Brandon Collins, Scott Stephens, John Battles

February 17, 2010

Primary focus is recent publication:

Outline

• Landscape fuel treatment design: theoretical v. actual
 o current approaches:
 ▪ strategically placed area treatments (SPLATs - Finney 2001)
 ▪ defensible fuel profile zones (DFPZs - Weatherspoon and Skinner 1996)
 ▪ treatment optimization module (TOM - Finney 2006)
 o constraints
 ▪ land allocation: wildlife, stream buffer
 ▪ appeals/litigation: time, avoidance
 ▪ funding: budgets, revenues

• Management decisions
 o define landscape: larger landscapes needed, match extent of current fires
 o stand treatment (thin, burn) and surface fuel treatment (pile, masticate, broadcast burn) types
 o individual treatment unit size: generally larger is better (500-4000 ac)
 o landscape design: strategic outperforms random placement
 o landscape proportion: 20-30%

• Modeling approaches and limitations for landscape fuel treatment evaluation
 o FlamMap (Finney 2006)
 ▪ use: generate ‘surfaces’ indicating landscape ‘flammability’, quantify treatment effects
 ▪ advantages: removes subjectivity associated with ignition locations and weather streams, computationally efficient
 ▪ limitations: constant weather, crown fire difficult to separate out
 o FARSITE (Finney 1998)
 ▪ use: individual fire growth and behavior based on detailed weather inputs
• **advantages**: more capable of approximating actual fires, crown fire more explicit
• **limitations**: ignition placement, weather stream, computationally intensive

 o Forest Vegetation Simulator (FVS - Dixon 2002), Fire and Fuels Extension (FFE - Reinhardt and Crookston 2003)
 • **use**: simulate treatments, grow treatments over time, uses actual plot data
 • **advantages**: tailor specific treatments, little parameterization
 • **limitations**: shrubs not modeled, user-defined regeneration, FUEL MODEL selection

 o ArcFuels (Ager et al. 2006)
 • **use**: integrated platform for evaluating landscape fire behavior and fuel treatment effects
 • **advantages**: too many to list
 • **limitations**: expertise to run FVS commands (kcp files), GIS manipulations, large dataset development and manipulation

References
Dixon GE (2002) 'Essential FVS: a user's guide to the Forest Vegetation Simulator.' U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. (Fort Collins, CO, USA)