Why do we manage vegetation?

Administrative Direction

• From Sierra Nevada Forest Plan Amendment (ROD, 2004, page 4):
 • Adopts an approach for modifying wildland fire behavior across broad landscapes through the strategic placement of area treatments, including direction to avoid California spotted owl protected activity centers (PACs) and northern goshawk PACs wherever possible.
 • Requires a landscape level assessment of opportunities and constraints to be completed as a first step in designing the pattern of fuels treatments needed to implement the fire and fuels strategy.
Administrative Direction

• From Sierra Nevada Forest Plan Amendment (ROD, 2004, page 4, cont.):

 • Provides opportunities to reduce stand density and improve tree vigor and overall forest health,

 • Incorporates new fuels and vegetation management standards and guidelines,

 • Adopts an active and focused adaptive management and monitoring strategy.

Congressional Direction

• Through the annual appropriations process and Congressional budget direction, specific funding for specific activities are given to the Forest Service.

• Emphasis (and $$$$) since 2000 has been on improvement of forest health and prevention of catastrophic wildfire.
Where do we manage vegetation?

Project Development Process

- Fresno River Landscape Analysis (July 2005)
- Fire Risk Assessment and Analysis with Collaboration
 - Community Wildfire Protection Plan
 - Madera County; Eastern Madera Fire Safe Council; CalFire; Mariposa Fire Safe Council; Yosemite National Park; Inyo National Forest; Coarsegold Resource Conservation District; Yosemite/Sequoia Resource and Development Council; Resource Advisory Council; Community Volunteer Fire Departments and Local Homeowner Associations.
Identification of Wildland Urban Intermix at High Risk from wildland fire.

Projects designed to center around these communities and are focused on:
- Fuels Reduction
- Wildfire Modification
- Improving Forest Health

Local knowledge of current forest conditions and past/present fire behavior.

Project Development Process

- Linking Administrative Direction and Local Planning together for Project Development.

 Planning → Scoping → Environmental Documentation → Implementation
Sugar Pine Adaptive Management
Project-Purpose and Need

- Fuels reduction that protects human communities from wildland fires and where fire suppression capabilities are enhanced.

- Reduce stand densities of conifers to have improved resiliency against attack from insects, diseases, lower levels of yearly precipitation (drought conditions) and/or wildland fire.

- To demonstrate the effectiveness of the Standards and Guidelines in the 2004 Sierra Nevada Forest Plan Amendment.
Testing the Fisher S&G’s

- What are the most important S&G’s?
- Can they be implemented?
- Based on “new information,” are there other scientifically valid S&G’s that will achieve the same or more effective results intended in the existing S&G’s?

S & G for Pacific Fisher
(SNFP ROD, pg 61)

85. Protect fisher den site buffers from disturbance with a limited operating period (LOP) from March 1 through June 30 for vegetation treatments as long as habitat remains suitable or until another Regionally-approved management strategy is implemented. The LOP may be waived for individual projects of limited scope and duration, when a biological evaluation documents that such projects are unlikely to result in breeding disturbance considering their intensity, duration, timing, and specific location.
86. Avoid fuel treatments in fisher den site buffers (700 acres) to the extent possible. If areas within den site buffers must be treated to achieve fuels objectives for the urban wildland intermix zone, limit treatments to mechanical clearing of fuels. Treat ladder and surface fuels to achieve fuels objectives. Use piling or mastication to treat surface fuels during initial treatment. Burning of piled debris is allowed. Prescribed fire may be used to treat fuels if no other reasonable alternative exists.

90. Prior to vegetation treatments, design measures to protect important habitat structures as identified by the wildlife biologist, such as large diameter snags and oaks, patches of dense large trees typically ¼ to 2 acres, large trees with cavities for nesting, clumps of small understory trees, and coarse woody material. For example, use firing patterns, place fire lines around snags and large logs, and implement other prescribed burning techniques to minimize effects to these attributes. Use mechanical treatments when appropriate to minimize effects on preferred fisher habitat elements.
Our current thinking is leading us to believe that S&G 86, as written in the SNFPA 2004 ROD, is not workable and should not be the standard which is “tested” in the Sugar Pine project. The 700 Acre Den site Buffer is the biggest concern due to the fact that:

- Den sites move
- Den sites will likely change throughout the life of the project, creating unworkable contracting issues
- Density Management objectives for the project area as a whole cannot be met, especially if there are more den sites than we are currently aware of (a likely scenario). Fire is not the only “enemy” of quality Fisher habitat. Ponderosa pine is most at risk.

Fisher Habitat Map
Based on “new information”, are there other scientifically valid S&G’s that will achieve the same or more effective results intended in the existing S&G’s?

Yes!

New Information

- Summary Findings – An Ecosystem Management Strategy.

- Lessons Learned regarding Fisher Habitat Maintenance – Cheryl Carrothers & Diane Macfarlane

- 5.0 Management Recommendations – PSW June 2008
How do we translate the “new science” to the project?

- SNF Interim Pacific Fisher Habitat Maintenance and Improvement Approach (Smith, Sorini-Wilson, Williams)
- Sugar Pine Design Standards

Questions and Input???