Sierra Nevada Adaptive Management Project
CA Spotted Owl Team

Dr. R.J. Gutiérrez, Principal Investigator
Douglas Tempel, Project Leader
Sheila Whitmore, Asst. Project Leader
William Berigan, Asst. Project Leader

University of Minnesota, Dept. of Fisheries, Wildlife & Conservation Biology

Photo by Sheila Whitmore
Owl Team Research Objectives

• To assess the potential effects of SPLATs on spotted owl territory occupancy and reproductive success.
 – Identify explanatory variables having the strongest relationship with the response variables.
 – Consider all relevant explanatory variables (e.g. amount of pre-existing habitat within an owl territory).
 – Estimate the effect size of any important explanatory variables.
Key Definitions

- **Territory**—site that is actively defended by a single owl or a pair of owls (i.e., owls responding to vocalizations during surveys).

- **Territory Center**—location(s) within an owl territory which owl activity is centered upon (nest site, roost sites).

- **Territory Size**—a circle with radius of \(\approx 1100\) meters around the territory center.
Data Collection

• History of occupancy and reproduction for each owl territory during the course of the SNAMP study (considers both SNAMP study and Eldorado study).

• Individual owl capture-recapture histories.

• Habitat data for each owl territory, including pre-treatment data for territories that overlap SPLATs.

Field visit on Tuesday, July 29, 2:00 p.m., Blodgett Forest Research Station. First-hand look at owl data collection.
Owl Data Collection

• Owls are captured and banded with unique color band and tab combinations.

• Owl reproductive status is assessed with use of feeder mice.

• Conduct “blanket surveys” of entire study area to locate all owl territories.

Photo by Logan McConnell
Habitat Data Collection

- Important variables for describing habitat “quality” of owl territories:
 - Dominant tree size/basal area
 - Canopy cover
 - Understory layer
 - Downed logs
 - Proportion of territory in suitable habitat

- Before and after measurements needed for SPLAT treatments to quantify their effects on owl habitat.

- Standard method needed to map habitat within owl territories:
 - LiDAR will only be collected for Last Chance control & treatment sites; owl study area is much larger.
 - Maps derived from aerial photos should be more accurate than maps derived from LANDSAT satellite data.
Habitat Data Collection

Nested Field Plots
(490 m² and 1960 m²)

• Within the inner circle, we will measure:
 • All trees ≥15 cm dbh.
 • Canopy cover using a densitometer (i.e. sight tube).
 • Understory cover (≤2.5 m above ground) using a cover pole.
 • Downed logs ≥25 cm diameter at large end.
 • Slope and aspect.

• Within the outer circle, we will measure:
 • All trees ≥75 cm dbh.
Habitat Data Collection

Photo by Chris Binschus
Owl Study Areas for SNAMP
Last Chance Owl Study Area

Legend
- Owl territory center
- Owl territory
- Pine Nut treatment
- Last Chance treatment
- Owl buffer area
- 2008 Fires

Distance Scale: 0 1.25 2.5 5 7.5 10 Kilometers
Last Chance Owl Study Area

Sailor Flat area

Robinson Flat area

Smoke from recent fires

Photos by Sheila Whitmore
Example: Map of BKJ OE territory
2008 Results on Last Chance Owl Study Area

<table>
<thead>
<tr>
<th>Territory ID</th>
<th>Social Status</th>
<th>Repro Status</th>
<th># Fledglings</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILL</td>
<td>Single</td>
<td>Unknown</td>
<td>0</td>
<td>None</td>
<td>Resight</td>
</tr>
<tr>
<td>DEADN</td>
<td>Single</td>
<td>Unknown</td>
<td>0</td>
<td>Detected</td>
<td>None</td>
</tr>
<tr>
<td>DEADW</td>
<td>Pair</td>
<td>No</td>
<td>0</td>
<td>Captured</td>
<td>Recapture</td>
</tr>
<tr>
<td>DIXQM</td>
<td>Pair</td>
<td>No</td>
<td>0</td>
<td>Resight</td>
<td>Resight</td>
</tr>
<tr>
<td>GLENN</td>
<td>Pair</td>
<td>No</td>
<td>0</td>
<td>Resight</td>
<td>Captured</td>
</tr>
<tr>
<td>GREEK</td>
<td>Pair</td>
<td>No</td>
<td>0</td>
<td>Unbanded</td>
<td>Resight</td>
</tr>
<tr>
<td>HARDC</td>
<td>Pair</td>
<td>Nest</td>
<td>2</td>
<td>Resight</td>
<td>Captured</td>
</tr>
<tr>
<td>LASTC</td>
<td>Pair</td>
<td>Nest</td>
<td>2</td>
<td>Captured</td>
<td>Captured</td>
</tr>
<tr>
<td>OAKFL</td>
<td>Pair</td>
<td>Nest</td>
<td>1</td>
<td>Resight</td>
<td>Captured</td>
</tr>
<tr>
<td>SAIFL</td>
<td>Pair</td>
<td>No</td>
<td>0</td>
<td>Unbanded</td>
<td>Captured</td>
</tr>
<tr>
<td>SCREW</td>
<td>Pair</td>
<td>No</td>
<td>0</td>
<td>Resight</td>
<td>Resight</td>
</tr>
<tr>
<td>SECCA</td>
<td>Pair</td>
<td>Nest</td>
<td>1</td>
<td>Captured</td>
<td>Captured</td>
</tr>
</tbody>
</table>
2008 Nest Tree (OAKFL) on Last Chance Owl Study Area

Photos by Tom Anderson
2008 Nest Tree (LASTC) on Last Chance Owl Study Area

Photos by Sheila Whitmore
Projected Sample Sizes

<table>
<thead>
<tr>
<th>Study Area</th>
<th>Treated Owl Territories</th>
<th>Untreated Owl Territories</th>
<th>Planned SPLATs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Chance</td>
<td>4</td>
<td>7</td>
<td>Last Chance, Pine Nut</td>
</tr>
<tr>
<td>Eldorado Density</td>
<td>4(+)</td>
<td>24(-)</td>
<td>O'Leary's Cow, Big Grizzly (?)</td>
</tr>
<tr>
<td>Eldorado Regional</td>
<td>5</td>
<td>10</td>
<td>Hartless Ridge, Hey Joe, Misfire</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>
Data Analysis

• Territory occupancy:
 – Use Program MARK for analysis.
 – Provides estimates of territory colonization (γ) and territory extinction (ε) probabilities.
 – Can include covariates in analysis (e.g., habitat variables, treatment effects)

• Reproductive output:
 – Use PROC MIXED in SAS software.
 – Can include covariates in analysis.
Model Development for Data Analysis

• We will specify a set of candidate models to explain variation in territory colonization (y), territory extinction (ε), and reproductive output. Models will be based on previous research and expected effects.

• Candidate models will be ranked using AIC; the most parsimonious model(s) are selected.

• Example: territory extinction is a function of the amount of pre-existing habitat within a territory and the amount of habitat removed during treatment.

$$\text{territory extinction} = B_0 + B_1 \times \text{(amount of pre-existing habitat)} + B_2 \times \text{(amount of habitat removed during treatment)}$$

• Identifying the set of candidate models provides an opportunity for IT participation.